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Effects of random bathymetric irregularities on wave generation by transcritical ship
motion in a shallow channel are investigated. Invoking Boussinesq approximation
in shallow waters, it is shown that the wave evolution is governed by an integro-
differential equation combining features of Korteweg–deVries and Burgers equations.
For an isolated ship, the bottom roughness weakens the transient waves radiated both
fore and aft. When many ships advance in tandem, a steady mount of high water can
be formed in front and a depression behind. Wave forces on both an isolated ship
and a ship in a caravan are obtained as functions of the mean-square roughness, ship
speed and the blockage coefficient.

1. Introduction
With increasing numbers of high-speed ferries, marine accidents are of serious

concern to several ports and seaways in the world. Large waves like ‘the white cliffs
of Dover’ caused by a fast catamaran have been blamed for the death of a victim
overthrown from another fishing boat, near the Port of Harwich, UK. There have
been strong indications that these waves are close to solitary waves known to appear
ahead of a ship advancing near the critical speed (linearized long-wave speed) in a
channel (Hamer 1999).

An unusual characteristic of the upstream solitons is that they are the unsteady
response to steady forcing, unlike the transonic flow in compressible aerodynamics.
Although noted long ago in tank experiments by Thews & Landweber (1935),
scientific interest was renewed by laboratory observations of ship-induced solitons
by Ertekin, Webster & Wehausen (1986). Theoretical elucidations were started by
Wu & Wu (1982) who studied the two-dimensional problem (vertical and horizontal)
by numerical solution of the one-dimensional Boussinesq approximation which
includes weak nonlinearity and dispersion, for waves generated by a moving
surface pressure. For a moving point disturbance, Akylas (1984) showed that the
free-surface elevation is governed by the forced Korteweg–deVries equation. A similar
two-dimensional analysis for a bottom obstacle was made by Cole (1985).

An upstream soliton due to a slender ship in a channel is a three-dimensional
problem. Asymptotic theories have been given by Mei (1986) for a thin strut, and for
a slender ship in a channel with a flat bottom by Mei & Choi (1987). Their studies
were confined to a narrow channel so that the disturbances both fore and aft are one-
dimensional. Choi & Mei (1989) further studied a wide channel in which the waves in
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the wake are fully two-dimensional and must be treated by the Kadomtsev–Petviashvili
(K-P) equation . Further extensions have been reported by Chen & Sharma (1995) who
considered a ship moving parallel to the sidewalls but off the centreline of the channel,
and took into account more realistic geometry of the ship hull. Li & Sclavounos (2002)
examined numerically ship-induced waves in an unbounded shallow sea. They found
that wave crests radiated upstream are no longer straight, but are parabolic. By direct
numerical simulation, Zhang & Chwang (2001) solved the full Euler’s equations for
the transcritical flow over a semi-infinite step facing either forward or backward, and
found an upstream- or a downstream-propagating undular bore.

The effects of a randomly uneven seabed of intermediate depth have been studied
for free nonlinear surface waves without ships by Mei & Hancock (2003) and Pihl,
Mei & Hancock (2002). They have shown that the envelope of narrow-banded waves
obeys an extended nonlinear Schrödinger equation with a complex damping term.
For long waves in shallow seas, harmonic generation and localization have been
examined by Grataloup & Mei (2003), and soliton localization by Mei & Li (2004),
both for a homogeneous fluid layer. Extension to interfacial waves in a two-layered
sea has been reported by Alam & Mei (2007).

In this paper, we examine ship-generated waves in a shallow channel with a
randomly uneven bed, when the ship speed is near-critical. The present work is a com-
bination of Mei (1986) and Mei & Choi (1987) on upstream radiation of solitons over
a smooth bed, and of Mei & Li (2004) on soliton propagation over a randomly rough
bed. Our objectives are to examine how disorder affects the stochastic mean quantities
such as the free-surface profiles and the wave forces on a ship. Results are discussed
for an isolated ship as well as a caravan of identical ships travelling at the same speed.

2. Exact formulation
Let the channel be of nearly rectangular cross-section with uniform width 2W and

constant mean depth H0. In the stationary frame of reference (x∗, y∗, z∗), the channel
depth H ∗(x∗) deviates slightly from the mean by a one-dimensional random fluctuation
h∗(x∗) so that H ∗(x∗) = H0−h∗(x∗) where h∗(x∗) � H0. A ship of length 2L advances at
a constant speed U along the centreline of the channel in the direction of the positive
x∗-axis. Assuming symmetry, only half of the channel width need be considered.

For treating the neighbourhood of the ship, it is convenient to use the ship-bound
coordinates (ξ ∗ = x∗−Ut∗, y∗, z∗). In dimensional terms, the three-dimensional velocity
potential Φ∗ satisfies

Φ∗
ξ ∗ξ ∗ + Φ∗

y∗y∗ + Φ∗
z∗z∗ = 0, (2.1)

in the fluid (−H ∗ <z∗ <ζ ∗), and

Φ∗
z∗ = ζ ∗

t∗ + (−U + Φ∗
ξ ∗)ζ ∗

ξ ∗ + ζ ∗
y∗Φ∗

y∗, (2.2)

gζ ∗ + Φ∗
t∗ − UΦ∗

ξ ∗ + 1
2
[(Φ∗

ξ ∗)2 + (Φ∗
y∗)2 + (Φ∗

z∗)2] = 0, (2.3)

on the free surface (z∗ = ζ ∗), and

Φ∗
y∗ = 0, y∗ = W, (2.4)

on the channel bank. No flux across the ship hull r∗ =
√

y∗2 + z∗2 = R∗(ξ ∗, θ) requires

∂Φ∗

∂n∗ = (−U + Φ∗
ξ ∗)

R∗
ξ ∗√

1 + R∗2
θ /R∗2

, r∗ = R∗(ξ ∗, θ). (2.5)
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where r∗ and θ are polar coordinates in the (x∗, y∗)-plane. In moving coordinates, the
bed condition is

∂Φ∗

∂z∗ = H ∗
ξ ∗Φ

∗
ξ ∗, z∗ = −H ∗(x∗) = −H ∗(ξ ∗ + Ut∗). (2.6)

It is assumed that H ∗(x∗) is a random function of x∗ with constant mean H0.
For treating the waves far away from the ship, we shall later employ the stationary

coordinates and assume weak nonlinearity and dispersion:

ε ≡ A

H0

� 1, μ ≡ H0

L
� 1 with ε = O(μ2), (2.7)

where A denotes the characteristic wave amplitude. As in Mei & Choi (1987), we also
assume that the channel width is comparable to ship length,

L

W
= γ = O(1), (2.8)

and that the ship is slender so that the characteristic radius of the cross-section R0,
defined by πR2

0 = S0 where S0 is the maximum area of the cross-section, is small
compared to the length L, so that the slenderness ratio is

δ ≡ R0

L
= O(μ5/2) � 1 . (2.9)

The blockage coefficient, defined as the ship-to-channel ratio of cross-sectional areas,
is of the order

CB ≡ S0

2WH0

=
πR2

0

2WH0

∼ R2
0

L2

L2

WH0

∼ O(μ4). (2.10)

The method of matched asymptotics will be employed. Accordingly, the cross-
section of the rectangular channel is separated into three regions around a ship. In
the ship-bound coordinate, they are distinguished by:

(a) the near field: |ξ ∗| � O(L), (y∗, z∗) = O(R0),
(b) the intermediate field: |ξ ∗| � O(L), (y∗, z∗) = O(H0),
(c) the far field: |ξ ∗| � O(L), y∗ = O(W ) � O(H0), z∗ = O(H0).

For a ship advancing in shallow water, waves in the far field are essentially two-
dimensional in the horizontal plane and forced by the outward mass flux due the
bow-to-stern variation of the hull. We first sketch the derivation of the mass flux from
the near and intermediate fields in order to provide a lateral boundary condition for
the far field. Since the details are closely similar to Mei & Choi (1987), only the key
results are given here for clarity.

3. Near field
Since the bed is outside the near field, the bed roughness does not enter the

near-field analysis. Let the dimensionless near-field variables be defined by

Φ∗ =
AL

√
gH0

H0

Φ, ζ ∗ = Aζ, ξ ∗ = Lξ, (y∗, z∗, r∗) = R0(ŷ, ẑ, r̂), t∗ =
Lt̂√
gH0

.

(3.1)

Hereinafter, we shall choose A so that ε =μ2. Laplace’s equation becomes

δ2Φξξ + Φŷŷ + Φẑẑ = 0, − ∞ < ẑ <
μ3

δ
ζ, (3.2)
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where μ3/δ = O(μ1/2). The normalized kinematic and dynamic conditions on the
surface read:

Φẑ = μδζt̂ + μδ(−F + Φξ )ζξ +
μ3

δ
Φŷζŷ, ẑ =

μ3

δ
ζ, (3.3)

Φt̂ + ζ − FΦξ +
μ2

2

[
(Φξ )

2 +
1

δ2
(Φŷ)

2 +
1

δ2
(Φẑ)

2

]
= 0, ẑ =

μ3

δ
ζ, (3.4)

where F = U/
√

gH0 is the Froude number. On the ship hull we have

∂Φ

∂n
=

(
δ

μ

)2

(−F + μ2Φξ )
Rξ√

1 + (Rθ/R)2
. (3.5)

Note that (δ/μ)2 =O(μ3). By Taylor approximation about the mean sea level and
introducing expansions

Φ = Φ (0) + μ2Φ (2) +

(
δ

μ

)2

Φ (3) + · · · , ζ = ζ (0) + μ2ζ (2) +

(
δ

μ

)2

ζ (3) + · · · , (3.6)

Mei & Choi (1987) have shown that the near-field solution is quasi two-dimensional
in the cross-sectional plane

Φ = f (0) + μ2f (2) +
δ2

μ2

[
f (3) +

q

π
ln

(
δ

μ
r̂

)]
+ · · · , (3.7)

where q amounts to the radial flux caused by the changing cross-section from bow to
stern, and is related to the cross-sectional area of the hull S∗ = S0S(ξ ) by

q =
2

γ

μ

δ2
CBSξ = O(1), (3.8)

where CB is the blockage coefficient defined in (2.10). Equation (3.7) will provide
a condition for matching with the intermediate field at O(μ3). The functions
f (0), f (2), f (3) depend only on x̂, t̂ and contribute only to the wave force in the
ship. Note that the results in this section are deterministic.

4. Intermediate field
Renormalizing only the lateral coordinates

(y∗, z∗, h∗) = H0(ȳ, z̄, h), H ∗ = H0H, (4.1)

while keeping all other variables the same, we rewrite (2.1) as

μ2Φξξ + Φȳȳ + Φz̄z̄ = 0 in the fluid (4.2)

and (2.2) and (2.3) as,

Φz̄ = μ2[ζt̂ − Fζξ ] + μ4ζξΦξ + μ2ζȳΦȳ, z̄ = μ2ζ, (4.3)

Φt + ζ − FΦξ + 1
2

(
μ2Φξ + Φȳ + Φ2

z̄

)
= 0, z̄ = μ2ζ. (4.4)

For the uneven seabed, we shall assume, as in Mei & Li (2004), that the depth deviates
slightly from a constant mean:

H (x) = 1 − μh(x), i.e. H (ξ + Ft) = 1 − μh(ξ + Ft), (4.5)

where x = x∗/L. On the channel bed, we have

Φz̄ = μ3hξΦξ , z̄ = −1 + μh, (4.6)
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where h = h(x) is random in x with zero mean. Clearly, hx = hξ . In view of (3.7), the
intermediate field is driven by a line source, and also affected at the bottom by a
random disturbance. Both effects occur at O(μ3).

Again by assuming expansions in the form of (3.6), a sequence of linear boundary-
value problems is obtained. At O(μ0) and O(μ2), the solutions are not affected by
the bed roughness, nor by the line source, hence are deterministic. At O(μ3), Φ (3) is
the sum of a deterministic part and a stochastic part. The two parts can be solved
separately because of linearity. Since the right-hand side of (4.6) has zero stochastic
mean, 〈Φ (3)〉 is driven only by the line source from the near field. Hence, the solution
is the same as that for a smooth bed derived by Mei & Choi (1987). For matching
with the far field, we cite its outer approximation (ȳ � 1)

〈Φ〉 ≈ f (0) + μf (1) + μ2
[
f (2) − 1

2
(z + 1)2f (0)

zz

]
+

(
δ

μ

)2 (
f (3) + 1

2
qȳ

)
. (4.7)

At large ȳ, the stochastic mean of the lateral flux is therefore,

〈Φȳ〉 ≈
(

δ

μ

)2
1
2
q =

CBSξ (ξ )

γμ
, ȳ =

y∗

H0

� 1, (4.8)

which will give the boundary condition for the far field on y = 0.

5. The far field and the wave forces
In view of the assumption (2.7), the approximate Boussinesq equations apply in the

far field for the free-surface displacement and the depth-averaged horizontal velocity
u∗ =(u∗, v∗) = (φ∗

x, φ
∗
y) , where φ∗ is the depth-averaged potential.

Here, it is natural to use the stationary coordinates system. Let the following
dimensionless variables be introduced:

x∗ = Lx, y∗ = Wy, (z∗, H ∗) = H0(z, H ), t∗ =
tL√
gH0

, (5.1a)

(u∗, v∗) = (u, v)
A

H0

√
gH0, φ∗ =

AL
√

gH0

H0

φ, ζ ∗ = Aζ, (5.1b)

so that (u, v) = (φx, φy). The dimensionless Boussinesq equations are

∂ζ

∂t
+ ∇ · [(H + εζ )u] = 0 (5.2)

∂u
∂t

+ εu · ∇u + ∇ζ = μ2 H

2
∇

[
∇ ·

(
H

∂u
∂t

)]
− μ2 H 2

6
∇

(
∇ · ∂u

∂t

)
(5.3)

where ∇ = (∂/∂x, γ ∂/∂y).
For a randomly uneven seabed, as in Mei & Li (2004), we assume that the slight

deviation from a constant mean h(x) is stationary random with zero mean and known
covariance,

〈h(x)〉 = 0, 〈h(x)h(x ′)〉 = Γ (|x − x ′|). (5.4)

Our attention will be focused on the neighbourhood of the critical speed, i.e.

F ≡ U√
gH0

= 1 − αμ2, (5.5)

where the coefficient α = O(1) can be positive (negative) if the ship speed is subcritical
(supercritical).
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Alternatively, Bernoulli’s equation can be derived from (5.3), and then combined
with the continuity equation (5.2) to give a single equation for φ, with a stochastic
coefficient h:

∇2φ − ∂2φ

∂t2
− ε

2

∂

∂t
(∇φ)2 − ε∇ ·

(
∂φ

∂t
∇φ

)
+

μ2

3
∇2 ∂2φ

∂t2
− μ∇ · (h∇φ) = 0. (5.6)

On the channel bank y = 1, the boundary condition is

φy = 0, − ∞ < x < ∞, y = 1. (5.7)

On the ship path, the boundary condition for the stochastic mean is, by matching
with the intermediate field and using (3.8),

〈φy〉 =
1

μγ
〈Φy〉 =

CBSξ

μ2γ 2
= O(μ2), y ∼= 0, (5.8)

since ȳ = y/μγ . In view of the small departure from the critical speed, slow transients
are anticipated. Using two time variables t and τ = μ2t we assume a two-time
expansion for φ

φ = φ0(x, y, t, τ ) + μφ1(x, y, t, τ ) + μ2φ2(x, y, t, τ ) + · · · , τ = μ2t. (5.9)

The following perturbation equations are derived for O(1, μ, μ2):(
∂2

∂x2
+ γ 2 ∂2

∂y2
− ∂2

∂t2

)
φ0 = 0, (5.10)(

∂2

∂x2
+ γ 2 ∂2

∂y2
− ∂2

∂t2

)
φ1 =

∂

∂x

(
h

∂φ0

∂x

)
+ γ 2h

∂2φ0

∂y2
, (5.11)

(
∂2

∂x2
+ γ 2 ∂2

∂y2
− ∂2

∂t2

)
φ2 = 2

∂2φ0

∂t∂τ
+

1

2

∂

∂t
(∇φ0)

2 + ∇ ·
(

∂φ0

∂t
∇φ0

)

− 1
3
∇2 ∂2φ0

∂t2
+

∂

∂x

(
h

∂φ1

∂x

)
+ γ 2h

∂2φ1

∂y2
. (5.12)

Along the channel bank, we have

∂φ0

∂y
=

∂φ1

∂y
=

∂φ2

∂y
= 0, y = 1. (5.13)

Along the centreline (the ship path), we require
∂φ0

∂y
=

∂φ1

∂y
= 0, y = 0. (5.14)

At O(μ2), only the stochastic averages are required,

∂〈φ2〉
∂y

=
CB

γ 2μ4
Sx, y = 0, (5.15)

where Sx ≡ 0 for |x − Ft | > 1. At leading order, the governing equation for φ0 is
homogeneous. Owing to the boundary condition, (5.13), (5.14), it can be shown that
the solution for φ0 is one-dimensional (independent of y). Focusing attention on
waves advancing forward with the ship, we take

φ0 = φ0(σ, τ ), (5.16)

where σ = x − t is the characteristic coordinate.
At O(μ), the equation for φ1 is inhomogeneous. The second forcing term on the

right-hand side of (5.11) is identically zero. The first term is random with zero mean.



Transcritical ship waves in a randomly uneven channel 403

Hence, the response is likewise stochastic with zero mean,

φ1 = −
∫ t

−∞
dt ′

∫ ∞

−∞
dx ′G(x, t; x ′, t ′)

∂

∂x ′

(
h(x ′)

∂φ0(x
′ − t ′, τ )

∂x ′

)
, (5.17)

where

G(x, t; x ′, t ′) = − 1
2
H[(t − t ′) − |x − x ′|], (5.18)

is Green’s function with H denoting the Heaviside step function (Duffy 2001, § 3.1,
p. 78).

We next take the stochastic average of (5.12) and integrate the result with respect to
y from 0 to 1. Applying the boundary condition (5.15), we obtain an inhomogeneous

equation for φ̄2 =
∫ 1

0
φ2dy which is the cross-channel average of φ2,

∂2〈φ̄2〉
∂x2

− ∂2〈φ̄2〉
∂t2

= 2
∂2φ0

∂t∂τ
+

CB

μ4
Sx +

1

2

∂

∂t

(
∂φ0

∂x

)2

+
∂

∂x

(
∂φ0

∂t

∂φ0

∂x

)
− 1

3

∂4φ0

∂x2∂t2
+

∂

∂x

〈
h

∂φ1

∂x

〉
, (5.19)

The last term on the right-hand side of (5.19) can be evaluated as in Mei & Li
(2004)(equations 18–22, 24–29) to give

∂

∂x

〈
h(x)

∂φ1

∂x

〉
= 2

∂

∂σ

{
Γ (0)

2

∂φ0

∂σ
+

Γ̂ (0)

8

∂2φ0

∂σ 2
+

1

16

∫ ∞

−∞
Γ

(
σ − σ ′

2

)

×∂2φ0

∂σ ′2 dσ ′ +
1

8

∫ ∞

−∞
P

(
σ − σ ′

2

)
∂3φ0

∂σ ′3 dσ ′
}

(5.20)

where Γ̂ is the Fourier transform of the covariance Γ and

P (x) =

∫ ∞

|x|
Γ (u) du. (5.21)

In particular, if the covariance is Gaussian,

Γ (x − x ′) = D2 exp

(
− (x − x ′)2

2�2

)
, (5.22)

where D is the dimensionless root-mean-square amplitude of the random roughness
and � is the dimensionless correlation length (normalized, respectively, according to
�∗ = �L and D∗ =D

√
AH0 or equivalently D∗ = μDH0). Equation (5.20) then takes

the more explicit form (Mei & Li 2004)

∂

∂x

〈
h(x)

∂φ1

∂x

〉
= 2D2 ∂

∂σ

{
1

2

∂φ0

∂σ
+

√
2π�

8

∂2φ0

∂σ 2
+

1

16

∫ ∞

−∞
exp

(
− |σ − σ ′|2

8�2

)

× ∂2φ0

∂σ ′2 dσ ′ +

√
2π�

16

∫ ∞

−∞
erfc

(
|σ − σ ′|
2
√

2�

)
∂3φ0

∂σ ′3 dσ ′
}

. (5.23)

All terms on the right-hand side of (5.19) are functions of σ = x − t to the leading
order, hence it satisfies the homogeneous one-dimensional wave equation. For 〈φ̄2〉 to
be bounded, the right-hand side must vanish, yielding the evolution equation for φ0.

0 = 2
∂2φ0

∂t∂τ
+

CBSx

μ4
+

1

2

∂

∂t

(
∂φ0

∂x

)2

+
∂

∂x

(
∂φ0

∂t

∂φ0

∂x

)
− 1

3

∂4φ0

∂x2∂t2
+

∂

∂x

〈
h

∂φ1

∂x

〉
.

(5.24)
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By using the zeroth-order approximations of (5.2) and (5.3), we replace −φ0,t and
φ0,x by ζ , so that

∂ζ

∂τ
+ 3

2
ζ

∂ζ

∂x
+

1

6

∂3ζ

∂x3
− 1

2

∂

∂x

〈
h

∂φ1

∂x

〉
= −1

2

CBSx

μ4
. (5.25)

It is convenient to transform (5.25) further from (x, t, τ ) and (σ = x − t, τ ) to the
ship-bound coordinates (ξ, τ ) where ξ = x − Ft = σ + ατ . Since ∂/∂x = ∂/∂σ = ∂/∂ξ ,
and σ − σ ′ = ξ − ξ ′, we obtain

∂ζ

∂τ
+ α

∂ζ

∂ξ
+ 3

2
ζ

∂ζ

∂ξ
+

1

6

∂3ζ

∂ξ 3
− 1

2

∂

∂x

〈
h

∂φ1

∂x

〉
= −1

2

CBSξ

μ4
. (5.26)

In the limit of a smooth bed, (5.26) reduces to the forced KdV equation of Mei (1986).
Without the moving ship, the integro-differential equation for waves over a stationary
random bed is recovered (Mei & Li 2004). Here, waves are forced deterministically
by the ship, but their propagation is altered by the added dispersion and diffusion
due to random scattering at the channel bottom.

For Gaussian correlation, we have

∂ζ

∂τ
+ α

∂ζ

∂ξ
+

3

2
ζ

∂ζ

∂ξ
+

1

6

∂3ζ

∂ξ 3

− D2 ∂

∂ξ

{
1
2
ζ +

√
2π�

8

∂ζ

∂ξ
+

1

16

∫ ∞

−∞
exp

(
−|ξ − ξ ′|2

8�2

)
∂ζ

∂ξ ′ dξ

+

√
2π�

16

∫ ∞

−∞
erfc

(
|ξ − ξ ′|
2
√

2�

)
∂2ζ

∂ξ ′2 dξ ′

}
= −β

2
Sξ where β ≡ CB

μ4
= O(1). (5.27)

Subject to the condition of vanishing initial data, the preceding integro-differential
equation (5.27) can be numerically solved by the spectral method in a periodic
domain much larger than the zone of significant motion, as in Mei & Li (2004) and
Alam & Mei (2007). Note that the parameter γ does not appear. Extension to a
somewhat wider channel of W/L =O(μ−1/2) is straightforward and leads to the same
integro-differential equation.

At the leading order, the hydrodynamic pressure is the same in the near,
intermediate and far fields, and is proportional to ζ ∝ f (0). Once the surface elevation
ζ is solved from (5.27), the wave forces on the ship follow by integration over the
hull. Let us define the dimensionless wave resistance, vertical lift and trim moment by

Rw =
R∗

w

ρgV
, Fz =

F ∗
z

ρgLAw

, M =
M∗

ρgL2Aw

, (5.28)

respectively, where V is the displaced volume of the ship, and Aw is its water-plane
area. It suffices to quote from Mei & Choi (1987) (equations (7.5), (7.7), (7.9)) that

Rw = − μ3

2Cp

∫ 1

−1

ζ
dS

dξ
dξ, Fz =

μ3

2Cw

∫ 1

−1

ζYwdξ, M =
μ3

2Cw

∫ 1

−1

ζYwξdξ, (5.29)

where Yw(ξ ) is the half-beam width at the water plane, Cp and Cw are, respectively,
the prismatic coefficient and the waterplane area coefficient defined by

Cp =
V

2LS∗
0

, Cw =
Aw

4BL
. (5.30)
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Figure 1. Free-surface evolution near a single slender ship moving at subcritical speed
(α = 0.5) in an infinite channel. The ship is located in the range −1 <ξ < 1. (a) D2 = 0,
(b) D2 = 0.5, (c) D2 = 1. Common parameters are β = 2, �= 1.

We now discuss the results of free-surface profiles caused by, and wave forces
on, slender ships, by the numerical solution of the initial-boundary-value problem
for (5.27). Such information can provide a quantitative basis for establishing new
regulations for ferry operations for the safety of both the vessels and the environment.

6. Computed free-surface profiles
6.1. One ship

We first examine the computed results for waves generated by a single ship in an
infinitely long channel. The cross-section is assumed to be a semicircle with its area
varying parabolically along the ship, i.e.

S(ξ ) =

{
1 − ξ 2, |ξ | < 1,

0, |ξ | > 1.
(6.1)

Here the spatial period (domain) for spectral computations is chosen to be sufficiently
large so that no appreciable disturbances are found near the ends. Typical long-time
evolution of waves are shown in figures 1–3 for α = 0.5 (subcritical) , 0 (critical) and
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Figure 2. As for figure 1, but at critical speed (α = 0).

−0.5 (supercritical) speeds. For each speed, three roughness amplitudes are chosen,
D2 = 0, 0.5 and 1. We fix the blockage parameter defined in (5.27) as β = 2 and the
correlation length as � = 1. Over a flat bottom (D =0), solitons are radiated upstream,
while nearly periodic waves with diminishing amplitudes trail behind a depression in
the wake. As the ship velocity increases from subcritical to supercritical values, the
frequency of soliton radiation decreases while the amplitude increases (Mei 1986).
Over a rough bed (finite D), the upstream waves are no longer solitons. A mound
of high water is pushed forward by the bow. As D increases, waviness gradually
disappears. The horizontal extent of the mound also decreases. In the ship’s wake,
trailing waves are found behind a stretch of depression. As the roughness increases,
undulations also disappear in the wake.

6.2. Many ships in tandem

Results for a caravan of identical ships are more striking. We first fix the centre-to-
centre separation distance to be �ξ = 20. The ship is located in −1 <ξN < 1 where
ξN is the centre of the Nth ship. At the critical speed α = 0, the free-surface evolution
is shown in figure 4 for three different roughnesses. Over a smooth bed, multiple
reflections continue so that waves between successive ships are always transient. For
small roughness height D2 = 0.5, several crests riding on a high plateau are radiated
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Figure 3. As for figure 1, but at supercritical speed (α = − 0.5).

upstream at first. After the leading crest reaches almost the mid length between two
ships, all crests reach a steady state and advance at the same speed. The leading crest
is the highest; the smaller ones trail behind with heights diminishing so that the free
surface reduces to a flat plateau near the stern. In the wake of a ship is a depression
which lengthens to join the leading crest ahead the following ship. As the roughness
increases, the number of undulating crests diminishes, resulting in a flat plateau of
high water ahead and a low depression behind.

The final steady wave profiles are shown in figure 5 for different roughness
amplitudes. The height of the high water in front of a ship in a caravan is nearly
independent of the roughness amplitude. However, the depths of the depressions
behind the ships decrease as the roughness amplitude increases. Higher roughness
also diminishes the undulation and the extent of the water mound in front.

The effect of the ship speed (α) is shown in figure 6. As the ship speed increases
from subcritical, critical to supercritical values, the average amplitude of high water
increases, but the horizontal extent decreases. The average depth of the depression
behind also decreases. For the given distance between ships (�ξ = 20), the supercritical
ship has the fewest undulations on the plateau in front.



408 M.-R. Alam and C. C. Mei

2

(a)

(b)

(c)

0

0
5

10
15

20
25

30
20

15

10

5

0

–2

2

1

0

–1

–2

–5
–10

ζ

ζ

0 5 10 15 20 25 30

–5–10

ξ

τ

20

15

10

5

0

τ

2

1

0

–1

–2

ζ

0 5 10 15 20 25 30

–5–10
20

15

10

5

0

τ

Figure 4. A caravan of ships separated by the distance �ξ = 20: Ships are located in the range
· · ·, −1 <ξ < 1, 19 < ξ < 21, · · · . (a) D2 = 0, (b) D2 = 0.5, (c) D2 = 1.0. Common parameters
are α = 0, β = 2, �= 1.

The effect of the blockage parameter (β) is shown in figure 7. In general, a more
slender ship (i.e. less blockage coefficient β) causes a smaller mound ahead and a
shallower depression behind, as expected.
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Figure 5. Effect of the roughness amplitude D2 on the free surface between successive ships
in a caravan separated at a distance �ξ =20. Input parameters are: �= 1, α = 0, β = 2. Arrows
represent the location and direction of ships.
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separated by the distance �ξ = 20. Input: �= 1, β = 2, D2 = 0.5. Results plotted are for
subcritical α = 0.5, critical α = 0, supercritical α = − 0.5. Arrows represent the location and
direction of ships.
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Figure 7. Effect of the blockage coefficient β on the free surface between successive ships
in a caravan separated by the distance �ξ = 20. Input parameters are: �= 1, α = 0, D2 = 0.5.
Arrows represent the location and direction of ships.

In figure 8, the effects of separation distance on the steady wave pattern between
ships are shown. For small separation (�ξ = 4), the profile resembles a periodic train
of cnoidal waves with a high crest in front and a shallow trough behind each ship.
As the separation increases to �ξ = 10, the high crest in front splits into two. Both
the peak height and the trough depth behind decrease. By further increasing the ship
separation to �ξ = 20 and 30, the crest in front becomes a high plateau with more
undulations; a long flat trough trails behind.
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α = 0, β = 2, �= 1. (a) �ξ = 4, (b) �ξ = 10, (c) �ξ =20, (d) �ξ =30. Arrows represent the
location and direction of ships.

7. Computed wave forces on a ship
From the numerical results of the preceding section, the free-surface displacement

(hence pressure) on the ship hull varies roughly linearly from stern to bow. This can
be used to derive crude qualitative estimates from (5.29) for comparison with the
computed waves forces to be presented. Let us approximate ζ along the waterline to
be linear in ξ ,

ζ ≈ ζ̄ + 1
2
�ζξ, (7.1)
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Figure 9. Resistance on a single ship in an infinite channel (cf. figures 1–3). Common
parameters are β = 2, �= 1, (a) D2 = 0, (b) D2 = 0.5, (c) D2 = 1, (d) D2 = 1.5, for α = − 0.5
(——), α = 0 (- - -), α = 0.5 (– · –).

where ζ̄ ≡ [ζ (−1, τ )+ζ (1, τ )]/2 denotes the mean and �ζ ≡ ζ (1, τ )−ζ (−1, τ ) denotes
the difference, obtainable from computations. Assuming the ship cross-section to be
semi-circular (results for a rectangular cross-section are quite similar), we have

dS

dξ
= −2ξ, Yw(ξ ) =

√
2(1 − ξ 2)

π
. (7.2)

It is easy to show from (5.29) that

Rw ≈ μ3

2Cp

2

3
�ζ, Fz ≈ μ3

2Cw

√
2π

2
ζ̄ , M ≈ μ3

2Cw

√
2π

16
�ζ. (7.3)
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Figure 10. Vertical lift force on a single ship in an infinite channel (cf. figures 1–3).
Parameters and key as figure 9.

These estimates will be used shortly to interpret the computed forces. Note, in
particular, that the resistance and trimming moment are proportional to the drop of
water level from bow to stern, while the lift is proportional to the mean sea level. For
the chosen geometry of (6.1), Cp =2/3 and Cw = π/4.

7.1. One ship

The transient evolutions of wave resistance on a single ship in an infinitely long
channel are shown in figure 9 for different ship speeds and heights of disorder. For
comparison, we recall that in the linearized approximation, the ship-induced motion
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Figure 11. Trimming moment on a single ship in an infinite channel (cf. figures 1–3).
Parameters and key as figure 9.

can be steady and the wave resistance is zero for subcritical speeds and finite for
supercritical speeds (Tuck 1966). In a nonlinear theory for transcritical ship motion
over a flat bed, upstream radiation of solitons renders the resistance oscillatory in time
(Mei & Choi 1987). As the height of disorder increases, the oscillation diminishes,
consistent with the surface profiles shown in figure 1. A tendency towards steady
states is seen, but only after a long time, probably beyond the realm of accuracy
of the present asymptotic theory. Vertical forces and trimming moments follow the
same trend, as shown in figures 10 and 11. Note that for high roughness, the wave
resistance is lower for a supercritical speed and higher for a subcritical speed. The
same trend is found for a ship in a caravan, which will be discussed shortly.
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Figure 12. Effect of the roughness amplitude D2 (cf. figure 5) on forces and moments on a
ship in a caravan separated at �ξ = 20. Parameters are β = 2, �= 1, α =0 for D2 = 0.5 (——);
D2 = 1.0 (- - -); D2 = 1.5 (– · –).

Based on the linearized shallow-water theory, Tuck (1966) found the vertical force
at subcritical speeds to be downward, hence inducing sinkage, and cited some exper-
imental evidence that the force is upward at supercritical speeds, hence inducing lift.
According to the nonlinear theory, a slightly subcritical ship over a flat bed also exper-
iences a downward vertical force (see for example Mei & Choi 1987, figure 5). Random
bed roughness now amplifies the upward vertical force, hence lift can be experienced
by subcritical and supercritical ships. The pitching (trimming) moment follows a
similar trend which is similar to that of the resistance, as shown in figure 11. For a
moderate bottom roughness, the trimming moment is almost independent of the speed.

7.2. Many ships in tandem

Wave forces on a ship in a caravan are shown in figure 12 for the critical speed only,
but for different mean-square heights of bed roughness. All forces approach steady
states at large times. As D2 increases, the wave resistance and moment decrease while
the lift increases. The reason can be understood from figure 5, which shows that
an increase in the roughness does not change the height of the high water in front,
but reduces the depth of depression behind, hence �ζ decreases with increasing D2,
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resulting in the reduction of wave resistance and trimming moment, in accordance
with (7.3). On the other hand, the vertical force increases with roughness height. This
is consistent with the increase in mean water level, consistent with (7.3).

Figure 13 shows the effect of the speed of ships over a bed of the same roughness.
Again, higher speeds (smaller α) give lower wave resistance and moment, but
greater lift at the steady state. From computations leading to figure 6, we find
�ζ = 1.9545, 1.894 and 1.802 for α = 0.5, 0 and −0.5, respectively. The decrease of Rw

and M with increasing ship speed is indeed the result of decreasing �ζ ; the increase of
Fz is the consequence of increasing ζ̄ , as seen in figure 6, again in agreement with (7.3).

Finally, figure 14 shows that as the separation distance increases, the wave resistance
and the trimming moment decrease, as expected, but the vertical lift does not follow
a monotonic trend.

8. Concluding remarks
It is known that when a ship advances near the critical speed in a channel with a

smooth bottom, solitons are radiated periodically upstream. Our study here shows that
if the channel bed is randomly uneven, in contrast to a flat bed, transient radiation is
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Figure 14. Effect of the separation distance (cf. figure 8 ) on a ship in a caravan. Plotted
curves are �ξ = 4 (——); �ξ = 10 (- - -); �ξ = 20 (– · –). Common parameters are D2 = 0.5,
α = 0, β =2, �= 1.

replaced by an expanding mound of high water pushed upstream. Surface undulations
weaken, and forces and moments tend to become steady. If a caravan of identical
ships advance at transcritical speed in the channel, transient waves can be totally
damped, leading to a steady train of high waters between ships. In rivers, ships are
more likely to cruise at high speed only if the river is much wider than is assumed here.
In that case, waves in the wake must be two-dimensional. Experimental confirmation
in a towing tank and extension of the present theory by adding Burgers-like terms to
the forced Kadomtsev–Petviashvili equation are both worthwhile. Of possible interest
to oceanography is the effect of random depth fluctuations on tide-induced solitons
in a narrow strait with coastal indentations, protrusions, sills or ridges. Interesting
changes from the case of one or few sills or ridges over a smooth bed (Baines 1995;
Melville & Helfrich 1987; Cummins et al. 2003) may be expected.
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